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Evaluation of the mechanical properties of current biliary self-expandable 
metallic stents: axial and radial force, and force zero border 

Hook-and-cross-type SEMSs had a low AF and high AF zero border and were considered safest due to minimal stress on the 
biliary wall. However, the increase in RF must be overcome. 
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Background/Aims: Mechanical properties (MPs) and axial and radial force (AF and RF) may influence the efficacy and complications 
of self-expandable metallic stent (SEMS) placement. We measured the MPs of various SEMSs and examined their influence on the 
SEMS clinical ability. 
Methods: We evaluated the MPs of 29 types of 10-mm SEMSs. RF was measured using a conventional measurement device. AF was 
measured using the conventional and new methods, and the correlation between the methods was evaluated. 
Results: A high correlation in AFs was observed, as measured by the new and conventional manual methods. AF and RF scatterplots 
divided the SEMSs into three subgroups according to structure: hook-and-cross-type (low AF and RF), cross-type (high AF and low 
RF), and laser-cut-type (intermediate AF and high RF). The hook-and-cross-type had the largest axial force zero border (>20°), fol-
lowed by the laser-cut and cross types. 
Conclusions: MPs were related to stent structure. Hook-and-cross-type SEMSs had a low AF and high axial force zero border and were 
considered safest because they caused minimal stress on the biliary wall. However, the increase in RF must be overcome. 

Keywords: Axial force; Cholestasis; Mechanical property; Radial force; Self-expandable metallic stent  
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Fig. 1. Types of biliary self-expandable metallic stents. (A) Cross-
type stents are knitted to form an X-shape, and the wires do not sep-
arate (WallFlex). (B) Hook-and-cross-type stents are formed by hook 
and cross knitting, in varying proportions. In hook knitting, the 
wires form a V-shape, and are separated from each other by bends 
(Hanaro). (C) Zigzag-type stents consist of a wavy wire shaped into 
vertically connected rings forming a cylinder. The laser-cut stent is 
based on the zigzag stent (EPIC).

INTRODUCTION 

Self-expandable metallic stents (SEMSs) are commonly used 
for the treatment of malignant biliary strictures.1-3 Biliary SEMS 
can be divided into zigzag, cross, and hook types, and they 
are manufactured using two fabrication methods (laser-cut or 
braided).4 The zigzag stent consists of a wavy wire formed into 
vertically connected rings comprising cylinders.5,6 The laser-cut 
stent is based on the zigzag stent and classified according to 
their shape, number of cells and how they are connected. In 
contrast, braided stents are classified based on the braid-pat-
tern, cell size, and wire knit thickness. There are two types of 
braided stents: cross-knit and hook-and-cross-knit (Fig. 1).  

The mechanical properties (MP) of metallic stents vary de-
pending on their structure, wire thickness, and cover material.7 
Several MP affect the clinical efficacy of SEMS, and the US FDA 
has published parameters to be measured for clinical applica-
tion8: (1) dimensional verification; (2) foreshortening; (3) recoil 
of balloon-expandable stents; (4) stent integrity; (5) radial com-
pression force; (6) radial outward force; and (7) radiopacity. In 
addition to radial compression and outward force, we measured 
the axial force (AF) and classified the SEMS into three groups.9 
AF is the straightening force on the central axis of the stent, 
and radial force (RF) is the expanding force that induces radial 
deformation of the stent (Table 1). AF contributes to the con-
formability of the bile duct, and RF contributes to its dilation. 
AF and RF are closely associated with biliary stent function and 
the incidence of adverse events.10,11 A strong AF can cause acute 
cholecystitis12,13 and post-endoscopic retrograde cholangiopan-
creatography pancreatitis.14,15 A weak RF is associated with stent 
dislocation.16 

Some SEMSs can maintain a bend at various angles; hook-
and-cross-type SEMS can have large angles. We investigated the 
AF strength and the angle at which the force is relieved to re-
turn the SEMS to a straight position; this was referred to as the 
axial force zero border (AFZB) (Table 1). We propose the use 
of AFZB to analyze the relationship between clinical outcomes 
and stent MP. SEMSs with a large AFZB are considered to exert 
low stress on the bile duct, and thus, may have a low complica-
tion rate. In this study, we measured the AF, RF, and AFZB of 
the main stents currently used in clinical practice and classified 
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Table 1. Explanations for mechanical properties of the metallic stents 
Mechanical properties Figures Explanations Clinical meaning
AF The straightening force for the bending of the central 

axis of the stent
Strong: biliary kinking, cholecystitis, 

pancreatitis

RF The expanding force for radial deformation of the 
stent

Weak: malexpansion, stent dislocation

AFZB The angle relative to the central axis in which the AF is 
zero and fixed as the stent straightens out of flexion.

Small: persistent pressure on the bile-
duct wall

AF, axial force; RF, radial force; AFZB, axial force zero border.

AF

RF

AFZB

them according to their characteristics to evaluate the relation-
ship between stent characteristics and clinical efficacy. 

METHODS 

Types of biliary SEMSs 
The MP of 29 different biliary SEMSs were evaluated. Two 
stents of each type (58 SEMS) were assessed by five physicians 
(T.F., T.S., R.I., S.Y., and H.I.; Fig. 2). Two engineers (H.S. and 
C.G.) instructed the physicians on how to measure the RF and 
AF. The mean measurements for each stent type and size were 
used in the analysis. 

SEMSs (8 cm in length and 10 mm in diameter) assessed in 
this study were: 11 covered, four partially covered, and 14 un-
covered (Table 2). The stents varied in terms of hook-to-cross 
ratios, wire thicknesses, cover materials, and covering methods. 
The SEMSs were divided based on the manufacturing method 
(21 braided and eight laser-cut). The braided SEMSs were fur-
ther divided based on the knitting method (seven cross-only 
and 14 hook-and-cross hybrids). 

Measurement of radial force 
RF was measured as described by Sasaki et al.,17 using an RF 

measurement device (Model TTR2; Blockwise Engineering 
LLC; Fig. 3). The measurement was started at 3 mm for the 
10-mm-diameter stents in the expansion phase. The stent was 
compressed from the outside to a cylinder diameter of 4 mm. 
A force gauge inside the cylinder continuously recorded the 
outward RF during the stent expansion phase. The compression 
RF was the force required during the compression phase. The 
outward RF dilates the stricture after stent placement, whereas, 
the compression RF counteracts tumor growth and bile duct 
narrowing after stent expansion. 

The RF measurement device provided a hoop force (HF) val-
ue, as reported previously.9 RF was calculated using the follow-
ing formula17: RF=HF×2π. The RF versus stent diameter curves 
were plotted using the average value of each stent type (Fig. 4).  

We set the typical RF value to 4 mm when comparing the 
characteristics of the stents, in line with a previous study; 4 mm 
is considered to be approximately half the typical stent diameter 
and the minimum required for successful biliary drainage. 

Measurement of axial force 
The AF was measured in two ways. In the conventional mea-
surement method, as reported by Isayama et al.,9 the SEMS was 
fixed in a vise, and AF was measured manually using a force 

Yamagata et al. Mechanical properties of biliary SEMS
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Fig. 2. Overview of the self-expandable metallic stents evaluated in the present study.

gauge (DPX-0.5; Imada Co. Ltd.) while maintaining the SEMS 
angle at 60° (Fig. 5A). 

The second method, which is new, uses a custom-made AF 

measurement device (i-Course Co., Ltd.; Fig. 5B). The SEMS 
was placed in a jig in the neutral position, and the shaft rod was 
rotated to 90° at a rotation speed of 10°/s (bending phase). After 
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a two seconds interval, the shaft rod was returned to the neutral 
position at the same speed (straightening phase). In both meth-
ods, data were measured three times per stent to increase ac-
curacy, and the average values were obtained. The force during 
the bending phase is called the resistance AF, and the force 
required during the straightening phase is called the straighten-
ing AF. Although the clinical significance of the resistance AF is 
unclear, the straightening AF, acts against the bile duct wall and 
duodenal papilla after stent placement and seems to be related 
to the onset of various stent-related complications. 

The straightening AF at 60° using the new measurement 
method was compared to that obtained using the conventional 
manual method; these forces were then correlated. We set the 
straightening AF at 60° to compare the characteristics of the 
stents, in line with a previous study,9 where obstructed distal 
bile ducts (e.g., pancreatic head ductal adenocarcinoma) are 
often ‘drawn in’ by the tumor creating a 60° curve. 

Axial force zero border 
AFZB is a new parameter that we proposed in our previous 
study.17 It is defined as the angle at which the torque force falls 
below 0.05 mNm during the straightening phase and was con-
tinuously measured using the new method (Fig. 6) at all angles. 
AFZB, the angle at which the force applied to the biliary duct 
almost disappears, can only be measured using the newly-de-
veloped AF measuring device. 

Statistical analysis 
To compare the conventional and new measurement methods, 
a least squares linear regression analysis was performed using 
the IBM SPSS software ver. 24.0 (IBM Corp.). Statistical signif-
icance was set at p<0.05. The correlation strength was classified 
as excellent (correlation coefficient >0.7), good-to-excellent 
(0.6–0.7), good (0.4–0.6), or poor (<0.4). 

Ethical statements 
Not applicable.

RESULTS 

Measurement of radial force 
Figure 7 depicts the RF versus stent expansion-contraction 
curves for each type. All stents were classified according to 
their structure and cover status (present or absent). The graphs 
are similar for each stent in the various series (ComVi, Niti-S, 
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Fig. 3. Radial force measurement device. The stent samples were 
inserted into the cylinder and then expanded. Expansion and resis-
tance forces were measured.

Fig. 4. Relationship between hoop force (HF) and radial force. The 
HF was modified to accord with the original concept of radial force. 
Radial force was calculated by multiplying HF by 2π (6.28). RF, radi-
al force.

HF=RF/2π

Hoop force Radial force
(previous study) (this study)

4 cm

60°

2 cm
5 mm 5 mmForce (N)

Torque (mNm)

2 cm
1 cm

Fig. 5. (A) Conventional manual method of measuring axial force 
(AF). This method measures the linearizing force of self-expandable 
metallic stent bending at 60°. (B) New AF measurement method. 
This method automatically measures torque in a straight stent posi-
tion using an AF measurement device.

AA BB

and WallFlex). Figure 8 compares the RF versus stent expan-
sion-contraction curves for all stents.  

All the stents had similarly shaped curves. The outward RF of 
all braided, covered SEMSs decreased rapidly at the beginning 
and end of the expansion phase. The forces of all braided, un-
covered and laser-cut SEMSs decreased at the end of the expan-
sion phase. The compression RF of all the SEMSs was stronger 
than the outward RF. 

Table 3 lists the RF at a diameter of 4 mm during the expan-
sion phase. The force of the braided SEMSs was generally <30 N, 
whereas that of the laser-cut SEMSs was >30 N. 

Axial force measurement and comparison of the measure-
ment methods 
Table 4 lists the AF data obtained during the bending phase 
at 30°, 60°, and 90°, and at 60° during the straightening phase. 
These data were measured using the newly-developed AF mea-
suring device. The AF at 60° during the straightening phase was 
compared among all the stents to evaluate the differences be-
tween the new and conventional measurement methods (Fig. 9 
and Table 5). The AF measured by the two methods was highly 
correlated (y=9.2359x, R=0.9366, p<0.001). 

Figure 10 depicts the AF versus ‘stent bending-straightening’ 
curves of each stent type, with SEMS classified by structure 
and cover status (present or absent). Figure 11 presents the AF 
versus ‘stent bending-straightening’ curves for each stent in the 
ComVi, Niti-S, and WallFlex series. The straightening AF was 
weaker than the resistance AF at the same angle. The forces on 
the covered SEMS were stronger than those on the uncovered 
SEMS. 

Table 4 lists the SEMS’s AFZB angles. Figure 12 shows that 
the AFZB angle was largest for the hook-and-cross-type stent, 
followed by the laser-cut- and cross-type stents. The hook-
and-cross-type stent had an AFZB >20°, whereas that of the 
laser-cut- and cross-type stents were <20° for both the covered 
and uncovered stents. The AFZB of the ComVi series SEMSs 
was >50°. 

Scatterplots of radial and axial force for all stents 
Figure 13 presents scatterplots of the outward RF at 4 mm 
and straightening RF at 60°, as measured by the new device. 
SEMs were classified according to their structure as laser-cut 
(zigzag-type), cross, and hook-and-cross types. The hook-and-
cross-type had a low AF (0–3 mNm) and RF (10–30 N). The 
cross-type had a high AF (6–9 mNm) but low RF (10–30 N). 

Yamagata et al. Mechanical properties of biliary SEMS
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The laser-cut-type had an intermediate AF (2–4 mNm) but a 
high RF (20–60 N). Thus, the stent structure had a stronger in-
fluence than the cover status on the RF and AF. 

DISCUSSION 

This is the second in vitro study to evaluate the MP (RF and 
AF) of biliary SEMSs.9 We changed the way AF is convention-
ally measured.17 In a previous report, the straightening AF 
was measured when the stent was bent at particular angles. In 
the present study, we employed a new newly-developed mea-
surement device, where a force gauge inside the stent cylinder 
continuously recorded the straightening and resistance AF. 
The correlation between the AF data obtained using this new 

method and the conventional manual method was excellent 
(y=9.2359x, R=0.9366, p<0.001; Fig. 9). 

There are two types of AF: the force applied when bending 
a straight stent (bending phase), and the force applied when 
straightening a bent state (straightening phase). The application 
of force to the bile duct wall after a stent is placed in the bile 
duct is clinically problematic; therefore, we compared the force 
when straightening from a bent condition, that is, the straight-
ening AF. SEMS with high AF may not fit or could be unstable 
in the biliary duct, thus damaging the biliary wall and leading 
to the formation of sludge, cholangitis, and migration.5,9 There-
fore, stents with excessive AF are not preferred. In this study, 
the cross-type stents had the strongest AF, followed by laser-cut, 
and hook-and-cross types. The influence of wire thickness, 

Fig. 6. Axial force (AF) measurement method using the new device. (A) AF measurement at onset. (B) AF measurement during the bending 
phase. The yellow arrow in the photo indicates the direction in which the arm moves. (C) Transition from the bending to straightening phase 
at 90°. (D) AF measurement during the straightening phase. The axial force zero border was measured as the angle at which the torque force 
was <0.05 mNm during the straightening phase.

Start AF measurement Bending phase

Finish bending at 90° Straightening phase

AF zero border

AA

CC

BB

DD
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Fig. 7. Radial force versus stent diameter curves. The same self-expandable metallic stents type, differing only in diameter, had similar curves. 
Expansion force was first measured using the cylinder until the stent was fully expanded. The diameter of the cylinder decreased, and the re-
sistance force was measured (solid line: expansion force; dotted line: resistance force).
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Fig. 8. Radial force versus stent diameter curve for the ComVi, WallFlex, and Niti-S stents (solid line: expansion force; dotted line: resistance 
force).
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hook-to-cross ratio, and cover material on MP is difficult to as-
sess because of the unique characteristics of and variability be-
tween stents (Table 2). The AF of the covered stents was higher 
than that of the uncovered stents when compared within the 
same series of hook-and-cross or laser-cut stents. The AF of the 
uncovered cross stents was almost the same as that of the cov-
ered cross stents (Table 4). Only the uncovered Evolution cross 
stent had a higher AF than the covered and partially covered 

cross stents. It is unclear why only this series exhibited the op-
posite trend, but this may be due to measurement errors or the 
unique weaving of the cover in this series. These results indicate 
that the primary determinant of stent AF is the stent structure, 
with cover status (present or absent) as a secondary factor.  

AFZB is a new parameter proposed in the present study, 
which was precisely measured by continuous AF measurements 
using a newly-developed device. Stents with low AF had a high 

Table 3. Comparison of radial outward force at 4 mm in the expansion phase of 10 mm SEMS 
Fully covered (N) Partially covered (N) Uncovered (N)

Braided
  ComVi 24.40 27.70 −
  ComVi (long cover) 25.90 − −
  ComVi II 23.40 − −
  EGIS 13.40 − 16.50
  Evolution 27.90 25.60 16.90
  HANARO 42.30 − 20.30
  HILZO standard cell type 17.40 − 16.90
  HILZO moving cell type − − 18.70
  Niti-S Large cell D type (thin wire type) − − 14.20
  Niti-S Large cell D type (thick wire type) − − 22.90
  Niti-S S type − 15.60 −
  SUPREMO 11.20 − −
  WallFlex 10.30 11.20 21.10
Laser-cut (zigzag type)
  BileRush − − 24.70
  EPIC − − 33.30
  X-suitNIR 32.80 − 42.90
  ZEOSTENT Covered 54.30 − −
  ZEOSTENT plus (thick) − − 32.50
  ZEOSTENT V (thin) − − 27.00
  Zilver635 − − 28.20

−, the stent does not exist or was not measured in this study.
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Fig. 9. Axial force measured by the new and conventional methods; a strong correlation was found (y=9.2359x, R=0.9366, p<0.001).
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Table 5. Comparison of conventional and new measurement methods of axial force 

Self-expandable metallic stent Diameter  
(mm) Structure

New measurement  
method stretching  

phase at 60° (mNm)

Conventional manual  
measurement  
method (N)

Covered metallic stent
  ComVi 10 Hook and cross 0.30 0.08
  ComVi (long cover) 10 Hook and cross 0.15 0.17
  ComVi II 10 Hook and cross 0.75 0.26
  EGIS 10 Hook and cross 1.60 0.21
  Evolution 10 Cross 7.20 0.67
  HANARO 10 Hook and cross 3.50 0.52
  HILZO 10 Hook and cross 3.95 0.32
  SUPREMO 10 Hook and cross 3.15 0.59
  Wallflex 10 Cross 7.00 0.75
  X-suitNIR 10 Laser-cut 3.80 0.44
  ZEOSTENT Covered 10 Laser-cut 3.00 0.42
Partially covered metallic stents
  ComVi (Partial cover) 10 Hook and cross 0.05 0.11
  Evolution (Partial cover) 10 Cross 6.30 0.60
  Niti-S S type (Partial cover) 10 Cross 8.90 0.83
  Wallflex (Partial cover) 10 Cross 6.25 0.52
Uncovered metallic stents
  BileRush selective 10 Laser-cut 1.55 0.19
  EGIS 10 Hook and cross 1.65 0.20
  EPIC 10 Laser-cut 2.85 0.29
  Evolution 10 Cross 8.70 0.75
  HANARO 10 Hook and cross 1.25 0.30
  HILZO moving cell type 10 Hook and cross 1.80 0.33
  HILZO standard cell type 10 Hook and cross 1.90 0.38
  Niti-S Large cell D type (thin wire type) 10 Hook and cross 0.30 0.03
  Niti-S Large cell D type (thick wire type) 10 Hook and cross 0.80 0.16
  Wallflex 10 Cross 6.40 0.61
  X-suitNIR 10 Laser-cut 1.95 0.19
  ZEOSTENT plus (thick) 10 Laser-cut 1.75 0.20
  ZEOSTENT V (thin) 10 Laser-cut 1.65 0.18
  Zilver635 10 Laser-cut 2.00 0.25

y=9.2359x
R=0.9366
p<0.001
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Fig. 10. Axial force versus angle curves. The axial force of stents of various diameters was measured using the new measurement device. The 
stent was bent to 90° and then straightened (solid line: bending phase; dotted line: straightening phase).
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Fig. 11. Axial force versus stent angle curves for ComVi, WallFlex, and Niti-S series stents (solid line: bending phase; dotted line: straightening 
phase).
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AFZB, and we observed a strong correlation between AF and 
AFZB (Table 4). This new parameter was defined as the angle at 
which the force applied to the biliary wall almost disappeared. 
Because no bile duct is completely straight, a SEMS with a very 
small AFZB angle could continuously compress and injure a 
part of the bile duct wall, resulting in ulceration, perforation, 
or bleeding. A SEMS with a large AF is more likely to cause 
stent-related complications, such as cholecystitis or pancreati-
tis, and the gap between the actual bend of the bile duct and 
AFZB may contribute to these complications. The relationship 
between AFZB and stent-related complications should be ex-
amined in the future. 

There are two types of RFs: the force applied when the stent 
expands from the retracted state (outward RF) and the RF ap-

plied to resist stent contraction from the expanded state (com-
pression RF). The force (outward RF) at which the stent dilates 
the stenosis is clinically important, and was thus evaluated. The 
RF of the covered SEMSs decreased rapidly at the beginning of 
the expansion phase (Fig. 7). We assumed that the crossover 
wire and cover membranes may have created a friction during 
the initial expansion motion, thereby increasing the RF value. 
We observed less friction at the beginning of an uncovered 
SEMS opening; this phenomenon has been previously reported, 
and the friction was lower than that in previous SEMSs.17 

We categorized the 10-mm SEMSs into three subgroups ac-
cording to stent structure (Fig. 13): the hook-and-cross group 
had a low AF (0–3 mNm) and RF (10–30 N); the cross group 
had a high AF (6–9 mNm) but low RF (10–30 N); and the la-

Fig. 12. Axial force zero border (red, hook-and-cross type; yellow, cross-type; blue, laser-cut-type).
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ser-cut group had an intermediate AF (2–4 mNm) but a high 
RF (20–60 N). These MP are useful in selecting the best SEMS 
for a given case.18 Based on our experience and previous re-
ports, RF influences migration,16,19 and AF is related to bile duct 
kinking,11,20,21 pancreatitis,14 and cholecystitis12 due to compres-
sion of the bile duct, cystic duct orifice, or pancreatic orifice. 
Therefore, the ideal SEMSs are those with high RF and low AF. 
When selecting the ideal SEMS for an individual case based on 
AFZB, we recommend using stents with a high RF rather than 
those with an AFZB below the angle of bile duct bend because 
the AF is theoretically zero if the angle of the bile duct is below 
the AFZB. 

This study had several limitations. First, we could not evalu-
ate all the SEMS available in Japan or other countries. A stan-

dard AF measurement method would facilitate larger studies 
including more stent types. Second, no standard AF measure-
ment method has been established, and the instrument used in 
this study is not widely available. Currently, we are developing 
a commercially available AF measurement instrument. Third, 
we could not measure the MP of each part of the SEMS body or 
special parts, such as flares. 

In conclusion, we examined the MP of several SEMSs using 
a new AF measurement method and proposed a new measure-
ment parameter: the angle at which the AF disappears (AFZB). 
Hook-and-cross-type SEMSs had a low AF and high AFZB and 
were considered safe because they exerted minimal stress on 
the biliary wall. However, the increase in RF must be overcome. 

RF
 at

 4
 m

m
 (n

)

0.00 2.00 4.00
AF streching phase at 60° (mNm)

6.00 8.00 10.00

60.00
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0.00

Fig. 13. Radial (RF) and axial force (AF) scatterplots of 10 mm self-expandable metallic stent (SEMS). Outward RF at 4 mm and AF in the 
straightening phase with the stent at 60°, as measured by the new method, are plotted (red, hook-and-cross type; yellow, cross-type; blue, la-
ser-cut-type).
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