Capsule endoscopy (CE) is a preferred diagnostic method for analyzing small bowel diseases. However, capsule endoscopes capture a sparse number of images because of their mechanical limitations. Post-procedural management using computational methods can enhance image quality. Additional information, including depth, can be obtained by using recently developed computer vision techniques. It is possible to measure the size of lesions and track the trajectory of capsule endoscopes using the computer vision technology, without requiring additional equipment. Moreover, the computational analysis of CE images can help detect lesions more accurately within a shorter time. Newly introduced deep leaning-based methods have shown more remarkable results over traditional computerized approaches. A large-scale standard dataset should be prepared to develop an optimal algorithms for improving the diagnostic yield of CE. The close collaboration between information technology and medical professionals is needed.
Citations
Citations to this article as recorded by
Multivariate Gaussian Bayes classifier with limited data for segmentation of clean and contaminated regions in the small bowel capsule endoscopy images Vahid Sadeghi, Alireza Mehridehnavi, Maryam Behdad, Alireza Vard, Mina Omrani, Mohsen Sharifi, Yasaman Sanahmadi, Niloufar Teyfouri, Xiaohui Zhang PLOS ONE.2025; 20(3): e0315638. CrossRef
A Review of Biomedical Devices: Classification, Regulatory Guidelines, Human Factors, Software as a Medical Device, and Cybersecurity Felix Tettey, Santosh Kumar Parupelli, Salil Desai Biomedical Materials & Devices.2024; 2(1): 316. CrossRef
Real‐time small bowel visualization quality assessment in wireless capsule endoscopy images using different lightweight embeddable models Vahid Sadeghi, Alireza Mehridehnavi, Yasaman Sanahmadi, Sajed Rakhshani, Mina Omrani, Mohsen Sharifi International Journal of Imaging Systems and Technology.2024;[Epub] CrossRef
STAR-RL: Spatial-Temporal Hierarchical Reinforcement Learning for Interpretable Pathology Image Super-Resolution Wenting Chen, Jie Liu, Tommy W. S. Chow, Yixuan Yuan IEEE Transactions on Medical Imaging.2024; 43(12): 4368. CrossRef
A Novel Computer-Aided Detection/Diagnosis System for Detection and Classification of Polyps in Colonoscopy Chia-Pei Tang, Hong-Yi Chang, Wei-Chun Wang, Wei-Xuan Hu Diagnostics.2023; 13(2): 170. CrossRef
Revealing the Boundaries of Selected Gastro-Intestinal (GI) Organs by Implementing CNNs in Endoscopic Capsule Images Sofia A. Athanasiou, Eleftheria S. Sergaki, Andreas A. Polydorou, Alexios A. Polydorou, George S. Stavrakakis, Nikolaos M. Afentakis, Ioannis O. Vardiambasis, Michail E. Zervakis Diagnostics.2023; 13(5): 865. CrossRef
Transformer with Hybrid Attention Mechanism for Stereo Endoscopic Video Super Resolution Tianyi Zhang, Jie Yang Symmetry.2023; 15(10): 1947. CrossRef
KAPSUL ENDOSKOPİYASI İLƏ İNCƏ BAĞIRSAQ MÜAYİNƏSİNDƏ MÖVCUD VƏZİYYƏT VƏ GƏLƏCƏK PERSPEKTİVLİYİ Həbib Həsənzadə, Amalya Həsənova Həbib Həsənzadə, Amalya Həsənova PAHTEI-Procedings of Azerbaijan High Technical Educational Institutions.2023; 34(11): 105. CrossRef
Small Bowel Detection for Wireless Capsule Endoscopy Using Convolutional Neural Networks with Temporal Filtering Geonhui Son, Taejoon Eo, Jiwoong An, Dong Oh, Yejee Shin, Hyenogseop Rha, You Kim, Yun Lim, Dosik Hwang Diagnostics.2022; 12(8): 1858. CrossRef
Dynamic Depth-Aware Network for Endoscopy Super-Resolution Wenting Chen, Yifan Liu, Jiancong Hu, Yixuan Yuan IEEE Journal of Biomedical and Health Informatics.2022; 26(10): 5189. CrossRef
X-ray Imaging for Gastrointestinal Tracking of Microscale Oral Drug Delivery Devices Rolf Bech Kjeldsen, Maja Nørgaard Kristensen, Carsten Gundlach, Lasse Højlund Eklund Thamdrup, Anette Müllertz, Thomas Rades, Line Hagner Nielsen, Kinga Zór, Anja Boisen ACS Biomaterials Science & Engineering.2021; 7(6): 2538. CrossRef
VR-Caps: A Virtual Environment for Capsule Endoscopy Kağan İncetan, Ibrahim Omer Celik, Abdulhamid Obeid, Guliz Irem Gokceler, Kutsev Bengisu Ozyoruk, Yasin Almalioglu, Richard J. Chen, Faisal Mahmood, Hunter Gilbert, Nicholas J. Durr, Mehmet Turan Medical Image Analysis.2021; 70: 101990. CrossRef
Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy Ji Hyung Nam, Youngbae Hwang, Dong Jun Oh, Junseok Park, Ki Bae Kim, Min Kyu Jung, Yun Jeong Lim Scientific Reports.2021;[Epub] CrossRef
Kvasir-Capsule, a video capsule endoscopy dataset Pia H. Smedsrud, Vajira Thambawita, Steven A. Hicks, Henrik Gjestang, Oda Olsen Nedrejord, Espen Næss, Hanna Borgli, Debesh Jha, Tor Jan Derek Berstad, Sigrun L. Eskeland, Mathias Lux, Håvard Espeland, Andreas Petlund, Duc Tien Dang Nguyen, Enrique Garcia Scientific Data.2021;[Epub] CrossRef
Development and Verification of a Deep Learning Algorithm to Evaluate Small-Bowel Preparation Quality Ji Hyung Nam, Dong Jun Oh, Sumin Lee, Hyun Joo Song, Yun Jeong Lim Diagnostics.2021; 11(6): 1127. CrossRef
Role of Artificial Intelligence in Video Capsule Endoscopy Ioannis Tziortziotis, Faidon-Marios Laskaratos, Sergio Coda Diagnostics.2021; 11(7): 1192. CrossRef
Design and Research of Interactive Animation of Immersive Space Scene Based on Computer Vision Technology Shan Wu, Hubin Liu, Qi Xu, Yulong Liu, Sang-Bing Tsai Mathematical Problems in Engineering.2021; 2021: 1. CrossRef
Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy Sang Hoon Kim, Youngbae Hwang, Dong Jun Oh, Ji Hyung Nam, Ki Bae Kim, Junseok Park, Hyun Joo Song, Yun Jeong Lim Scientific Reports.2021;[Epub] CrossRef
Artificial intelligence that determines the clinical significance of capsule endoscopy images can increase the efficiency of reading Junseok Park, Youngbae Hwang, Ji Hyung Nam, Dong Jun Oh, Ki Bae Kim, Hyun Joo Song, Su Hwan Kim, Sun Hyung Kang, Min Kyu Jung, Yun Jeong Lim, Sudipta Roy PLOS ONE.2020; 15(10): e0241474. CrossRef
EndoL2H: Deep Super-Resolution for Capsule Endoscopy Yasin Almalioglu, Kutsev Bengisu Ozyoruk, Abdulkadir Gokce, Kagan Incetan, Guliz Irem Gokceler, Muhammed Ali Simsek, Kivanc Ararat, Richard J. Chen, Nicholas J. Durr, Faisal Mahmood, Mehmet Turan IEEE Transactions on Medical Imaging.2020; 39(12): 4297. CrossRef
Unlike wired endoscopy, capsule endoscopy requires additional time for a clinical specialist to review the operation and examine the lesions. To reduce the tedious review time and increase the accuracy of medical examinations, various approaches have been reported based on artificial intelligence for computer-aided diagnosis. Recently, deep learning–based approaches have been applied to many possible areas, showing greatly improved performance, especially for image-based recognition and classification. By reviewing recent deep learning–based approaches for clinical applications, we present the current status and future direction of artificial intelligence for capsule endoscopy.
Citations
Citations to this article as recorded by
A review of deep learning-based localization, mapping and 3D reconstruction for endoscopy Jiawei Zhong, Hongliang Ren, Qin Chen, Hui Zhang Journal of Micro and Bio Robotics.2025;[Epub] CrossRef
Computer-Aided Bleeding Detection Algorithms for Capsule Endoscopy: A Systematic Review Ahmmad Musha, Rehnuma Hasnat, Abdullah Al Mamun, Em Poh Ping, Tonmoy Ghosh Sensors.2023; 23(16): 7170. CrossRef
Machine learning based small bowel video capsule endoscopy analysis: Challenges and opportunities Haroon Wahab, Irfan Mehmood, Hassan Ugail, Arun Kumar Sangaiah, Khan Muhammad Future Generation Computer Systems.2023; 143: 191. CrossRef
Convolutional neural network-based segmentation network applied to image recognition of angiodysplasias lesion under capsule endoscopy Ye Chu, Fang Huang, Min Gao, Duo-Wu Zou, Jie Zhong, Wei Wu, Qi Wang, Xiao-Nan Shen, Ting-Ting Gong, Yuan-Yi Li, Li-Fu Wang World Journal of Gastroenterology.2023; 29(5): 879. CrossRef
Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Model Joowon Chung, Dong Jun Oh, Junseok Park, Su Hwan Kim, Yun Jeong Lim Diagnostics.2023; 13(8): 1389. CrossRef
Recognizing schizophrenia using facial expressions based on convolutional neural network Xiaofei Zhang, Tongxin Li, Conghui Wang, Tian Tian, Haizhu Pang, Jisong Pang, Chen Su, Xiaomei Shi, Jiangong Li, Lina Ren, Jing Wang, Lulu Li, Yanyan Ma, Shen Li, Lili Wang Brain and Behavior.2023;[Epub] CrossRef
A convolutional neural network for bleeding detection in capsule endoscopy using real clinical data Dorothee Turck, Thomas Dratsch, Lorenz Schröder, Florian Lorenz, Johanna Dinter, Martin Bürger, Lars Schiffmann, Philipp Kasper, Gabriel Allo, Tobias Goeser, Seung-Hun Chon, Dirk Nierhoff Minimally Invasive Therapy & Allied Technologies.2023; 32(6): 335. CrossRef
Computer vision-based solutions to overcome the limitations of wireless capsule endoscopy Ana Horovistiz, Marina Oliveira, Helder Araújo Journal of Medical Engineering & Technology.2023; 47(4): 242. CrossRef
Clinical impact of wireless capsule endoscopy for small bowel investigation (Review) Alin Ionescu, Adina Glodeanu, Mihaela Ionescu, Sorin Zaharie, Ana Ciurea, Andreea Golli, Nikolaos Mavritsakis, Didi Popa, Cristin Vere Experimental and Therapeutic Medicine.2022;[Epub] CrossRef
Small Bowel Detection for Wireless Capsule Endoscopy Using Convolutional Neural Networks with Temporal Filtering Geonhui Son, Taejoon Eo, Jiwoong An, Dong Oh, Yejee Shin, Hyenogseop Rha, You Kim, Yun Lim, Dosik Hwang Diagnostics.2022; 12(8): 1858. CrossRef
From labels to priors in capsule endoscopy: a prior guided approach for improving generalization with few labels Anuja Vats, Ahmed Mohammed, Marius Pedersen Scientific Reports.2022;[Epub] CrossRef
CNN-Based Segmentation Network Applied to Image Recognition of Angiodysplasias Lesion Under Capsule Endoscopy Ye Chu, Fang Huang, Min Gao, Duowu Zou, Jie Zhong, Wei Wu, Qi Wang, Xiaonan Shen, Tingting Gong, Yuanyi Li, Lifu Wang SSRN Electronic Journal .2022;[Epub] CrossRef
The role of computer-assisted systems for upper-endoscopy quality monitoring and assessment of gastric lesions Daniela Cornelia Lazăr, Mihaela Flavia Avram, Alexandra Corina Faur, Ioan Romoşan, Adrian Goldiş Gastroenterology Report.2021; 9(3): 185. CrossRef
Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy Sang Hoon Kim, Youngbae Hwang, Dong Jun Oh, Ji Hyung Nam, Ki Bae Kim, Junseok Park, Hyun Joo Song, Yun Jeong Lim Scientific Reports.2021;[Epub] CrossRef
Editors' Choice of Noteworthy Clinical Endoscopy Publications in the First Decade Gwang Ha Kim, Kwang An Kwon, Do Hyun Park, Jimin Han Clinical Endoscopy.2021; 54(5): 633. CrossRef
Applicability of colon capsule endoscopy as pan-endoscopy: From bowel preparation, transit, and rating times to completion rate and patient acceptance Fanny E.R. Vuik, Sarah Moen, Stella A.V. Nieuwenburg, Eline H. Schreuders, Ernst J. Kuipers, Manon C.W. Spaander Endoscopy International Open.2021; 09(12): E1852. CrossRef
A survey on contemporary computer-aided tumor, polyp, and ulcer detection methods in wireless capsule endoscopy imaging Tariq Rahim, Muhammad Arslan Usman, Soo Young Shin Computerized Medical Imaging and Graphics.2020; 85: 101767. CrossRef
Robotics in the Gut Jihong Min, Yiran Yang, Zhiguang Wu, Wei Gao Advanced Therapeutics.2020;[Epub] CrossRef
Using artificial intelligence to improve adequacy of inspection in gastrointestinal endoscopy Piet C. de Groen Techniques and Innovations in Gastrointestinal Endoscopy.2020; 22(2): 71. CrossRef
Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy Eyal Klang, Yiftach Barash, Reuma Yehuda Margalit, Shelly Soffer, Orit Shimon, Ahmad Albshesh, Shomron Ben-Horin, Marianne Michal Amitai, Rami Eliakim, Uri Kopylov Gastrointestinal Endoscopy.2020; 91(3): 606. CrossRef
Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network Hiroaki Saito, Tomonori Aoki, Kazuharu Aoyama, Yusuke Kato, Akiyoshi Tsuboi, Atsuo Yamada, Mitsuhiro Fujishiro, Shiro Oka, Soichiro Ishihara, Tomoki Matsuda, Masato Nakahori, Shinji Tanaka, Kazuhiko Koike, Tomohiro Tada Gastrointestinal Endoscopy.2020; 92(1): 144. CrossRef
Artificial Intelligence in Gastrointestinal Endoscopy Alexander P. Abadir, Mohammed Fahad Ali, William Karnes, Jason B. Samarasena Clinical Endoscopy.2020; 53(2): 132. CrossRef
WCE polyp detection with triplet based embeddings Pablo Laiz, Jordi Vitrià, Hagen Wenzek, Carolina Malagelada, Fernando Azpiroz, Santi Seguí Computerized Medical Imaging and Graphics.2020; 86: 101794. CrossRef
Recent Development of Computer Vision Technology to Improve Capsule Endoscopy Junseok Park, Youngbae Hwang, Ju-Hong Yoon, Min-Gyu Park, Jungho Kim, Yun Jeong Lim, Hoon Jai Chun Clinical Endoscopy.2019; 52(4): 328. CrossRef
Barriers to Artificial Intelligence Adoption in Healthcare Management: A Systematic Review Mir Mohammed Assadullah SSRN Electronic Journal .2019;[Epub] CrossRef