Skip Navigation
Skip to contents

Clin Endosc : Clinical Endoscopy

OPEN ACCESS

Articles

Page Path
HOME > Clin Endosc > Volume 54(5); 2021 > Article
Case Report Successful Endoscopic Ultrasound-Guided Treatment of a Spontaneous Rupture of a Hemorrhagic Pancreatic Pseudocyst
Chan Park1orcid, Tae Hyeon Kim2orcid, Hyung Ku Chon2,orcid
Clinical Endoscopy 2021;54(5):763-766.
DOI: https://doi.org/10.5946/ce.2020.279
Published online: March 3, 2021

1Department of Surgery, Wonkwang University College of Medicine and Hospital, Iksan, Korea

2Department of Internal Medicine, Wonkwang University College of Medicine and Hospital, Iksan, Korea

Correspondence: Hyung Ku Chon Department of Internal Medicine, Wonkwang University College of Medicine and Hospital, 895 Muwang-ro, Iksan, Chonbuk 54538, Korea Tel: +82-63-859-1676, Fax: +82-63-855-2025, E-mail: gipb2592@wku.ac.kr
• Received: October 21, 2020   • Revised: December 23, 2020   • Accepted: December 24, 2020

Copyright © 2021 Korean Society of Gastrointestinal Endoscopy

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 4,162 Views
  • 96 Download
  • 3 Web of Science
  • 3 Crossref
  • 2 Scopus
prev next
  • Spontaneous rupture of a hemorrhagic pancreatic pseudocyst may be life-threatening. Endoscopic ultrasound (EUS)-guided drainage has been reported to be a valuable treatment option for pancreatic pseudocysts. However, its usefulness in the management of a ruptured pancreatic pseudocyst is limited. We report a rare case of a spontaneous rupture of a hemorrhagic pancreatic pseudocyst in a patient with chronic pancreatitis, which was successfully treated with EUS-guided gastrocystostomy with a fully covered self-expandable metallic stent.
Pancreatic pseudocyst is a well-known complication of acute and chronic pancreatitis. Most pseudocysts spontaneously regress with conservative treatment [1]. However, serious complications, including cystic rupture, hemorrhage, infection, and pseudoaneurysm rupture, may increase the risk of morbidity and mortality [2]. In particular, spontaneous rupture of a hemorrhagic pancreatic pseudocyst may be life-threatening. Herein, we report a rare case of a spontaneous rupture of a hemorrhagic pancreatic pseudocyst in a patient with chronic pancreatitis, which was successfully treated with endoscopic ultrasound (EUS)-guided gastrocystostomy with a fully covered self-expandable metallic stent (FCSEMS).
A 46-year-old man with alcoholic chronic pancreatitis was admitted to our hospital with severe upper abdominal pain and high fever (temperature up to 38.5°C) for 1 day. A week ago, he was scheduled to undergo EUS-guided intervention for a pseudocyst in the pancreatic tail, about 9 cm in size, which was identified on magnetic resonance imaging (Fig. 1A). Laboratory tests revealed low hemoglobin (9.8 g/dL) and elevated inflammatory markers (white blood cell count 17,500/µL and C-reactive protein 324.56 mg/L). Abdominal computed tomography revealed that the hemorrhagic pancreatic pseudocyst had ruptured, with direct extension to the splenorenal ligament and subcapsular splenic space. However, there was no evidence of active contrast extravasation (Fig. 1B, C). EUS showed an anechoic thick-walled cystic lesion, 9 cm in size (Fig. 2A). Transgastric wall puncture was performed using a 19-gauge needle for fine-needle aspiration (EZ shot 3plusTM; Olympus, Tokyo, Japan), avoiding intervening vessels (Fig. 2B). Thick and turbid bloody fluid with debris was aspirated, and a 0.025-inch guidewire (Visiglide®; Olympus Medical Systems, Tokyo, Japan) was coiled into the pseudocyst cavity under fluoroscopic guidance (Fig. 2C). Subsequently, tract dilation was performed using a 6-Fr cystotome (Wilson-Cook Medical Inc., Bloomington, IN, USA), and an FCSEMS (BONA-AL® 10 mm diameter, 5 cm total length; Standard Sci Tech Inc., Seoul, Korea) with a 7-Fr nasocystic drainage tube was inserted for additional lavage and aspiration (Fig. 2D, E). The patient inadvertently removed the nasocystic tube 2 days after the procedure, but the FCSEMS was found to be well positioned on the X-ray. The clinical hallmarks improved, and the patient was discharged 12 days later. An abdominal computed tomography scan 4 weeks later showed complete resolution of the ruptured pseudocyst and perisplenic fluid collection (Fig. 3A, B). The metal stent that was placed for gastrocystostomy was removed. The patient recovered without any recurrent symptoms.
Spontaneous rupture of a hemorrhagic pancreatic pseudocyst is rare; however, it can be fatal if not properly managed. The exact mechanism is still unknown. One possible explanation of its occurrence in the current case could be that the pathologic changes, such as its erosion or disruption due to either severe inflammation or the activated lytic enzymes in the pseudocyst, in a superficial vessel may have weakened the pseudocyst wall, subsequently resulting in the spontaneous rupture of the hemorrhagic pseudocyst [3]. Pseudocyst rupture into the gastrointestinal tract may lead to bleeding or spontaneous regression; however, rupture into the peritoneal cavity may result in peritonitis or shock that requires urgent surgical intervention [4,5]. The presence of a high concentration of enzymes, such as amylase, lipase, and other proteolytic enzymes, in the pseudocyst can lead to its invasion into adjacent structures [6]. Traditional management of a ruptured pancreatic pseudocyst involves surgical treatment such as Roux-en-Y cystojejunostomy, distal pancreatectomy, and lavage [7].
EUS-guided drainage has been reported to be a valuable treatment option for pancreatic pseudocysts [8]. However, its usefulness in treating ruptured pancreatic pseudocysts is limited. In the present case, hemorrhagic cystic fluid from the ruptured pancreatic pseudocyst only occupied the area between the pancreatic tail and the perisplenic space because of the splenorenal and the gastrosplenic ligaments. Therefore, EUS-guided drainage was considered as the primary treatment, and complete resolution of the ruptured pseudocyst was achieved after the procedure. Substantial controversies remain regarding the use of plastic stents or FCSEMS during EUS-guided pseudocyst drainage. FCSEMSs conserve more time, are technically easier to use, have a higher treatment success rate, and require a shorter period for pseudocyst resolution than plastic stents [9]. In particular, in pseudocysts with thick debris, as in our patient, an FCSEMS may be a more suitable option with EUS-guided drainage.
In conclusion, according to our experience, EUS-guided drainage with an FCSEMS may be considered an effective alternative to surgery in cases where there is a localized fluid collection due to the ruptured pancreatic pseudocyst.
Fig. 1.
(A) Axial T2-weighted magnetic resonance imaging showing the main pancreatic duct dilation (open black arrow) with multiple pancreatoliths (black arrowheads) and a pseudocyst (open white arrow), about 9 cm in size, in the pancreatic tail. Abdominal computed tomography scan of a hemorrhagic pancreatic pseudocyst that ruptured spontaneously. (B) Axial and (C) coronal views showing mural discontinuity (black arrows) of the hemorrhagic pancreatic pseudocyst (asterisks), extension of fluid into the perisplenic space (white arrows), and multiple main pancreatic duct stones with pancreatic atrophy.
ce-2020-279f1.jpg
Fig. 2.
Endoscopic ultrasound-guided gastrocystostomy. (A) Large anechoic cystic lesion with hyperechoic material on endoscopic ultrasound, (B) The pseudocyst was punctured with a 19-gauge needle for fine-needle aspiration (white arrowhead). (C) Passage of a 0.025-inch guidewire under fluoroscopic guidance, (D) Placement of a metal stent with a nasocystic drainage tube, and (E) Endoscopic view showing gushing thick and turbid bloody fluid gushing out, and the presence of the metal stent.
ce-2020-279f2.jpg
Fig. 3.
Abdominal computed tomography scan showing complete resolution of the ruptured pancreatic pseudocyst with the metal stent (black arrow) on axial (A) and coronal (B) views.
ce-2020-279f3.jpg
  • 1. Song TJ, Lee SS. Endoscopic drainage of pseudocysts. Clin Endosc 2014;47:222–226.ArticlePubMedPMC
  • 2. Habashi S, Draganov PV. Pancreatic pseudocyst. World J Gastroenterol 2009;15:38–47.ArticlePubMedPMC
  • 3. Urakami A, Tsunoda T, Kubozoe T, Takeo T, Yamashita K, Imai H. Rupture of a bleeding pancreatic pseudocyst into the stomach. J Hepatobiliary Pancreat Surg 2002;9:383–385.ArticlePubMed
  • 4. Hiraishi H, Terano A. Images in clinical medicine. Rupture of a pancreatic pseudocyst into the duodenum. N Engl J Med 1999;340:1411.ArticlePubMed
  • 5. Rocha R, Marinho R, Gomes A, et al. Spontaneous rupture of pancreatic pseudocyst: report of two cases. Case Rep Surg 2016;2016:7056567.ArticlePubMedPMC
  • 6. Patidar Y, Sureka B, Singh VP, Bansal K, Maiwall R. Spontaneous rupture of intrahepatic pseudocyst into the inferior vena cava. Gastroenterol Rep (Oxf) 2018;6:225–227.ArticlePubMedPMC
  • 7. Mujer MT, Rai MP, Atti V, Shrotriya S. Spontaneous rupture of a pancreatic pseudocyst. BMJ Case Rep 2018;2018:bcr2018226296.ArticlePubMedPMC
  • 8. Alali A, Mosko J, May G, Teshima C. Endoscopic ultrasound-guided management of pancreatic fluid collections: update and review of the literature. Clin Endosc 2017;50:117–125.ArticlePubMedPMC
  • 9. Bang JY, Varadarajulu S. Metal versus plastic stent for transmural drainage of pancreatic fluid collections. Clin Endosc 2013;46:500–502.ArticlePubMedPMC

Figure & Data

REFERENCES

    Citations

    Citations to this article as recorded by  
    • Perforation of pancreatic pseudocyst diagnosed with endoscopy and treated with percutaneous drainage
      Mako Koseki, Yusuke Hashimoto
      DEN Open.2024;[Epub]     CrossRef
    • Spontaneous rupture of an infected pseudocyst of the pancreas: A case report
      Mohamed Fadhel Chtourou, Hazem Beji, Slim Zribi, Yassine Kallel, Mahdi Bouassida, Hassen Touinsi
      International Journal of Surgery Case Reports.2023; 105: 107987.     CrossRef
    • A ruptured pancreatic pseudocyst causes acute peritonitis with clinical characteristics of a gastrointestinal tract perforation
      Tran Que Son, Tran Hieu Hoc, Tran Thu Huong, Ngo Quang Dinh, Pham Van Tuyen
      Journal of Surgical Case Reports.2022;[Epub]     CrossRef

    • PubReader PubReader
    • ePub LinkePub Link
    • Cite
      CITE
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      Successful Endoscopic Ultrasound-Guided Treatment of a Spontaneous Rupture of a Hemorrhagic Pancreatic Pseudocyst
      Clin Endosc. 2021;54(5):763-766.   Published online March 3, 2021
      Close
    • XML DownloadXML Download
    Figure
    • 0
    • 1
    • 2
    Successful Endoscopic Ultrasound-Guided Treatment of a Spontaneous Rupture of a Hemorrhagic Pancreatic Pseudocyst
    Image Image Image
    Fig. 1. (A) Axial T2-weighted magnetic resonance imaging showing the main pancreatic duct dilation (open black arrow) with multiple pancreatoliths (black arrowheads) and a pseudocyst (open white arrow), about 9 cm in size, in the pancreatic tail. Abdominal computed tomography scan of a hemorrhagic pancreatic pseudocyst that ruptured spontaneously. (B) Axial and (C) coronal views showing mural discontinuity (black arrows) of the hemorrhagic pancreatic pseudocyst (asterisks), extension of fluid into the perisplenic space (white arrows), and multiple main pancreatic duct stones with pancreatic atrophy.
    Fig. 2. Endoscopic ultrasound-guided gastrocystostomy. (A) Large anechoic cystic lesion with hyperechoic material on endoscopic ultrasound, (B) The pseudocyst was punctured with a 19-gauge needle for fine-needle aspiration (white arrowhead). (C) Passage of a 0.025-inch guidewire under fluoroscopic guidance, (D) Placement of a metal stent with a nasocystic drainage tube, and (E) Endoscopic view showing gushing thick and turbid bloody fluid gushing out, and the presence of the metal stent.
    Fig. 3. Abdominal computed tomography scan showing complete resolution of the ruptured pancreatic pseudocyst with the metal stent (black arrow) on axial (A) and coronal (B) views.
    Successful Endoscopic Ultrasound-Guided Treatment of a Spontaneous Rupture of a Hemorrhagic Pancreatic Pseudocyst

    Clin Endosc : Clinical Endoscopy Twitter Facebook
    Close layer
    TOP